Discovery of high utility itemsets from on-shelf time periods of products

نویسندگان

  • Guo-Cheng Lan
  • Tzung-Pei Hong
  • Vincent S. Tseng
چکیده

Utility mining has recently been an emerging topic in the field of data mining. It finds out high utility itemsets by considering both the profits and quantities of items in transactions. It may have a bias if items are not always on shelf. In this paper, we thus design a new kind of patterns, named high on-shelf utility itemsets, which considers not only individual profit and quantity of each item in a transaction but also common on-shelf time periods of a product combination. We also propose a two-phased mining algorithm to effectively and efficiently discover high on-shelf utility itemsets. In the first phase, the possible candidate on-shelf utility itemsets within each time period are found level by level. In the second phase, the candidate on-shelf utility itemsets is further checked for their actual utility values by an additional database scan. At last, the experimental results on synthetic datasets also show the proposed approach has a good performance. Keyword: Data mining; Utility mining; High utility itemsets; On-shelf data. *corresponding author

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data sanitization in association rule mining based on impact factor

Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...

متن کامل

Mining high on-shelf utility itemsets with negative values from dynamic updated database

Utility mining emerged to overcome the limitations of frequent itemset mining by considering the utility of an item. Utility of an item is based on user’s interest or preference. Recently, temporal data mining has become a core technical data processing technique to deal with changing data. On-shelf utility mining considers on-shelf time period of item and gets the accurate utility values of it...

متن کامل

A Three-Scan Mining Algorithm for High On-Shelf Utility Itemsets

In this paper, we introduce a new kind of patterns, named high on-shelf utility itemsets, which consider not only individual profit and quantity of each item in a transaction but also on-shelf periods in a database. We have thus proposed a 3-scan mining algorithm to efficiently discover the itemsets. The proposed approach adopts a new pruning strategy and an itemset-generation mechanism to prun...

متن کامل

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

International Journal of advanced studies in Computer Science and Engineering

Utility mining emerged to overcome the limitations of frequent itemset mining by considering the utility of an item. Utility of an item is based on user’s interest or preference. Recently, temporal data mining has become a core technical data processing technique to deal with changing data. On-shelf utility mining considers on-shelf time period of item and gets the accurate utility values of it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011